

New Approach of Chip Manufacturing in China

Prof. Hanming Wu

Academician of the Chinese Academy of Engineering School of Micro-Nano Electronics, Dean Zhejiang University, PRC

Highlight

- 1. Background
- 2. China Future approach
- 3. Summary

Cost of Advaced Technology Nodes Fab & R&D

14 nm Fab cost US\$ 6B

14 nm R&D cost US\$ 2B

Background

Intel v.s.TSMC

The Global Semiconductor Supply Chain Based On Geographic Specialization Has Delivered Enormous Value For The Industry

Semiconductor Supply Chain

Cost savings vs.
Fully localized
"self-sufficient"
Supply chains:

\$0.9-1.2 T
Avoided upfront Investment

\$45-125 B

Annual cost efficiencies

35-65%

Enabled reduction in semiconductor prices

Worldwide Evolution of CMOS Nodes

CMOS Node	65nm	45nm HkMG	32nm (2009)	22nm Tri-Gate (2011)	14 nm FinFET (<i>IEDM</i> '14)	10nm (FinFET IEDM '17)
L_g (nm)	35	35	30	26	22	<u>20</u>
Contacted Poly Gate/(Metal 0) Pitch (nm)	220	160 0.703	112.5 0.711	90	70 (56)	<u>54</u> (36)
SRAM Area (mm²)	0.57	0.346	0.148	0.092	0.0588	0.0312
n/p-MOS I_{on} mA/mm @ V_{dd} =1V & I_{off} =100nA/mm	1.21/ 0.71 leng f	1.36/ 1.07 th scaling	1.55/ 1.21 factor	1.07/0.85 V _{dd} =0.75V	1.04/1.04 V _{dd} =0.7V (I _{off} =10nA/mm)	1.8/1.5 V _{dd} = 0.7v I _{off} =10nA /mm

Background

Slow Down Moore's Law Provide an Opportunity

Highlight

- 1. Background
- 2. China Future approach
- 3. Summary

Manuefacturing Technology in China Mainland

- 1. 28/14nm manufacturing processes for some special products is ready
- 2. 300mm wafer start to provide to chip manufacturing fab
- 3. Some key process equipments, such as advaced plasma etch tools, are technically ready to support chip manufactruing
- 4. Specialized CPU and 5G chips can be made in local chip Feb.

From: https://www.163.com/dy/article/HHE8F40E055225XN.html

TSMC Technology Roadmap

• Fine Feature size (TSMC, ISSCC 2021)

Technology Trends for Future Applications (Quadrant)

Si Technology

VN+Si

Von Neumann **Paradigm**

Planar MOSFET

3D FET: FinFET.

Nanowire FET Nanosheet FET

Bottleneck: $P \propto f^3$

VN-+Si

Brain-Like Technology

High-efficiency low-power solutions:

Neurons networks

In-memory computing

Artificial Intelligence Industrialization

Architecture **Emerging**

Von Neumann (VN) Architecture

Quasi-Logic **Technology**

VN Architecture with

Novel Devices: NCFET **PCFET**

SET

other non-CMOS devices

Beyond CMOS Technology

Emerging Technology

New-logic Devices:

Spintronic device Ouantum device

Non-VN Architecture:

Quantum computing Neuromorphic computing

Early Stage Exploration

Two Major Technology Approaches

From IMEC

More Moore

More than Moore

Post-Moore's Technology Trend

Market Driven

- HiSpd Computing
- Mobile Computing
- Autonomous perception& Calculation (IoT)

Technology

- Logic technologies
- Ground rule scaling
- Performance boosters
- Performance-power-area (PPA) scaling
- 3D integration
- Memory technologies
- DRAM technologies
- Flash technologies
- Emerging non-volatile-memory (NVM) technologies

PPAC Next Target in 2~3 years

- (P) Performance: Frequency raise 15%@ Voltage
- (P) Power: Reduce>30%@Same performance
- (A) Area: Reduce 30%chip area;
- (C) Cost: Wafer raise < 30% -Unit cost reduce 15%

Large Market Share in Matured Technology

- 83% market share at nodes above 10 nm
- Great room for innovation

From Industrial Securities

IC Technology Advancement Cannot Support The Increasing Demand in Computing Capability

How to meet the huge demands of computing capacity?

Future Trends for High Computing Capability Innovations

High computing capability can be achieved by innovations on computing paradigm, chip architecture, and integration technology

Computing Capability (CC) ~ transistor number (millions) × CC/million transistors

Future Trends for High Computing Capability Innovations

Computing-in-memory Chips

64 MB (world's largest) computingin-memory chip featuring 28 nm technology node and 300-500 TOPS

Reconfigurable Chips

Mixed-grain reconfigurable processing unit featuring 40 nm technology node and the world-leading energy efficiency (~20TOPS/W)

3D Integration Technology

TSV-based 3D heterogeneous integration has been demonstrated

Wafer-level Integration

Multiple patterning technology for interconnect fabrication with large node technology

Suggestions

Tsinghua Uni. Prof. Huaqiang Wu

Xtacking: From Revolution to Evolution:

To achieve higher density, higher speed and fast TTM, new innovations has been introduced to address the challenges along with the vertical scaling.

Xtacking™ Concept

Independent processing
On separated wafers

Memory cell wafer

Xtacking™ architecture

Wafer bonding processing with millions of metal **VIAs**

(Vertical Interconnect Accesses)

Into one wafer

FMS 2018

Higher IO speed

Up to 3.0Gbps IO speed

Higher bit density

CMOS Array hybrid bonding enhances Array Efficiency

Faster time-to-market

Modularized, parallel approach to product development and manufacturing

- BSSC (Back Side Source Connect) in Xtacking®: Simple process, lower cost and much lower defect level
- Transition from front side deep trench process to back side surface process much faster yield learning curve

FMS 2022

JCET Group Technology Portfolio

- > Comprehensive R&D and mass production experiences in conventional and advanced packaging
- > JCET Group's technologies and services have been recognized by the world's leading customers

JCET Group Technology Development Directions

Accelerate the R&D and MP of high-performance technologies incl. 2.5D and 3D

Enhance technical valueadded services such as highend testing and design services

Technology development for new markets incl. automotive, high-performance storage & computing

Promote the implementation of intelligent manufacturing

Heterogeneous Integration Technology On Chip (HITOC)

Traditional Achitecture

Chips from Corporation C*: 18 GB, one wafer (46,225 mm²) 16 nm Technology Node

HITOC

Chip from ICLEAGUE: 19.8 GB, one die (800 mm²) 40 nm Technology Node Scalable on Demand

Heterogeneous Integration Technology On Chip (HITOC)

HITOC exhibits advantages in performance, power consumption, area, bandwidth, latency, and fabrication simplicity etc.

CSTIC 2022:

- Nano Lab and ICLEAGUE co-invented the large-capacity 3D memory-integrated chip "Cuckoo"
- 800mm² area, Heterogeneous multi core processor, Intgelligent-NOC, Distributed SRAM, High bandwidth low latency 3D DRAM, 6 GB capacity, 6TB/s memory bandwidth

The Success of Technology Transformations Based on Integration of Industry & Education

HK/MG

Strained Si

Raised S/D

Berkeley → Intel

- Gate dielectric and thickness
- Increase Leakage current
- Reduce reliability
- High k gate dielectric

Yale → Ti

Strained Si, Ge, SiGe

MIT → Intel

- SCE & Series resistance
- Contact resistance
- Ultra shallow junction technology
- Raised S/D, Schottky S/D, etc

 $IBM \rightarrow IBM$

It takes more than ten years to transfer the achievement to industry

Three Major Functions of The Platform with a Complete Process Flow

Co-innovation

Design-manufacture combination platform

- ✓ 55 nm 12 inch process line
- ✓ For the post moore fragmentation Market

Talent training

Reconstruction of engineering college with combo of industry & Edu

- ✓ New engineering: training of excellent engineers
- ✓ Integration between industry and education

Ecosystem

IC chain construction

- ✓ Complete process verification for equipment and material
- ✓ Incubate innovative enterprises

R&D Mini Line With Complete Process Flow at ZJU

July 2021,Roof-sealing The end of 2021,Main body completion April 2022,Tape-out September 2022,Wafer out

R&D Mini Line With Complete Process Flow at ZJU

April 2022 all tools moved in

Full Process Flow Pilot Platform For Interdisciplinary Transformation To Industrialization

IC chain individual net

Highlight

- 1. Background
- 2. China Future approach
- 3. Summary

Summary

- Advanced process technology development is extremely challenging due to some antiglobalization, China technology roadmap has to be refocused to More than Moore path.
- More than Moore is one of the most promising technology, such as new structure, advanced package, specialized process technology
- China IC market capacity is huge in the post-Moore era for matured process technology nodes, due to diversified IC products on China market
- Education for Chip students would be engineering oriented instead of pure theoretic subject
- Globalization is the best way to develope IC technology. There would be NO WINNER if anti-globalization becomes reality
- Localized industry supply chain needs to be enhanced to secure IC industry in China, especially in epidemic peroid

Thank You!

Https: http://hic.zju.edu.cn/