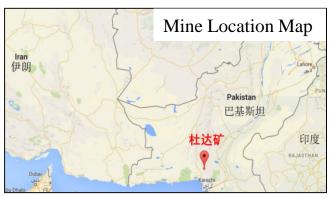
Duddar Project

Energy Saving & Environmental Protection Facilities

MHD


2020. 12

1. Project Overview

- The project is located in Lasbela District, Balochistan, Pakistan; 135km straight line distance from Karachi, 200km road distance;
- > It is also the only underground non-ferrous metal mine in Pakistan; the maximum mining depth is 1000m and the current mining depth is 600m.

Table of Technical & Economic Indicators

No.	Name of Index		Unit	Quantity
1	Geological Reserves		Tons	14, 310, 000
2	Designed Utilization Reserves		Tons	9, 900, 000
3	Mining Production Capacity			
	Mining Capacity		Tons/Day	1, 500
			Tons/Day	500, 000
4	Length of mine infrastructure		Years	4
5	Mine Life		Years	18
6	Concentration capacity		Tons/Year	500, 000
7	Products	Lead Concentrate	Tons/Year	20, 000
8		Zinc Concentrate	Tons/Year	80, 000
9	Total investment		USD	106, 510, 000

Representative Engineering of Mining Production System

Mine Hoist

Ramp Work Site

Underground Pump Room Chamber

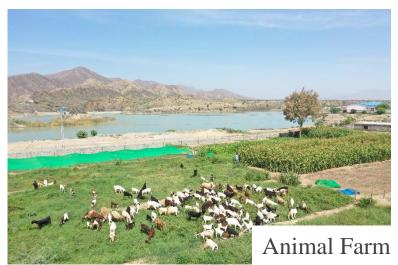
Inclined Shaft Operation Site

Adıt

一天也不耽误

-天也不懈怠

Representative Engineering of Ground Production & Auxiliary Systems


Concentrator Plant

Power Plant


Dam

Water Purification Plant

Procedures of Mining Technology

Mechanized stratified mining filling process

shovel out of mine

unload the Ore to the chute

一天也不耽误

一天也不懈怠

Beneficiation Processes

Crushing ore

Two-stage grinding

Re-grinding of medium ore

Concentrate dewatering

Concentrate dense

Lead and zinc flotation

Tailings discharge

Take a variety of measures to reduce solid waste emissions

- ➤ Backfilling of excavated waste rock into the quarry area, reducing solid waste emissions by over 65,000 tonnes per year.
- ➤ Reducing tailing sand discharge by 200,000 tonnes per year by using the tailing sand cement filling process. Duda produces 500,000 tonnes of raw ore per year, generating an average of 405,000 tonnes of tailings per year,

of which 50% of the coarse particles are added to the filling slurry for use in the filling of the void, reducing tailings discharge by approximately 200,000 tonnes per year.

Take a variety of measures to reduce solid waste emissions

- > Construction of tailings impoundments for the storage of tailings to avoid contamination
 - Storage capacity: 4 million m³
 - Dam body and bottom impermeable treatment
 - Designed to a 100-year flood standard

Full view of the tailings dam

Tailings dam discharge facilities

Take a variety of measures to reduce solid waste emissions

- > After crushing, the waste rock is used for filling of the quarry and as building material;
 - Producing 100,000m³ of filling material per year,
 consuming 50,000m³ of waste rock and reducing solid waste
 emissions by nearly 80,000 tonnes;
 - Waste stone crushed and used as building material for road building and site formation

Waste rock for road and dam construction

Production of sand after crushing of waste rock

Crushing of waste rock to produce infill aggregates

Complete environmental protection facilities such as ventilation and dust reduction

Water recycling and reuse

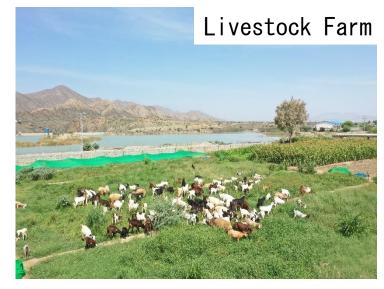
This technology is mainly applied in rainwater recycling and on-site production wastewater recycling, with a total of 100,000m³ of water collected up to now.

- □ Technology applications
 - > Rainwater recycling system
- lacktriangle On-site production and domestic wastewater utilisation systems Technical measures
 - Rainwater and mine gushing water are collected and purified through sedimentation and water purifiers for irrigation, water sprinkling and mineral processing chemicals.

Industrial backwater sedimentation tanks

- Production wastewater and domestic sewage are precipitated for beneficiation return water.
- □ Application Summary
 - Conserved water resources, collecting and using over 100,000m³.
 - Ensured water for site living and construction, producing good benefits.

Rainwater and mine water sedimentation and purification ponds



Integrated use of water collection and construction of a green ecological mine

